Assistant Professor Jennifer Weiser’s Recent Publications

POSTED ON: December 5, 2022

Dr. Jennifer Weiser, assistant professor of chemical engineering, has recently published work in the Biomedical Engineering Education journal, Biomaterials, and Cartilage in collaboration with current and past Cooper engineering students.

BIOMEDICAL ENGINEERING EDUCATION


In collaboration with the Icahn School of Medicine at Mount Sinai (ISMMS) and the AO institute in Switzerland, Prof. Weiser recently co-published “Teaching Tissue Repair Through an Inquiry-Based Learning Bioadhesives Module” in the Biomedical Engineering Education (2022).
Collaborators include Cooper alumnus and ISMMS grad student Chris Panebianco ChE’16, Poorna Dutta ChE’22, Jillian Frost ChE’22, Angela Huang ChE’22, Olivia Kim ChE’23. Read more about the research here.

ABSTRACT
Bioadhesives are an important class of biomaterials for wound healing, hemostasis, and tissue repair. To develop the next generation of bioadhesives, there is a societal need to teach trainees about their design, engineering, and testing. This study designed, implemented, and evaluated a hands-on, inquiry-based learning (IBL) module to teach bioadhesives to undergraduate, master’s, and PhD/postdoctoral trainees. Approximately 30 trainees across three international institutions participated in this IBL bioadhesives module, which was designed to last approximately 3 h. This IBL module was designed to teach trainees about how bioadhesives are used for tissue repair, how to engineer bioadhesives for different biomedical applications, and how to assess the efficacy of bioadhesives. The IBL bioadhesives module resulted in significant learning gains for all cohorts; whereby, trainees scored an average of 45.5% on the pre-test assessment and 69.0% on the post-test assessment. The undergraduate cohort experienced the greatest learning gains of 34.2 points, which was expected since they had the least theoretical and applied knowledge about bioadhesives. Validated pre/post-survey assessments showed that trainees also experienced significant improvements in scientific literacy from completing this module. Similar to the pre/post-test, improvements in scientific literacy were most significant for the undergraduate cohort since they had the least amount of experience with scientific inquiry. Instructors can use this module, as described, to introduce undergraduate, master’s, and PhD/postdoctoral trainees to principles of bioadhesives.

BIOMATERIALS


Prof. Weiser co-published “Genipin-crosslinked fibrin seeded with oxidized alginate microbeads as a novel composite biomaterial strategy for intervertebral disc cell therapy” in ScienceDirect’s Biomaterials (Vol. 287, August 2022). 

Collaborators include Cooper alumnus and ISMMS grad student Chris Panebianco ChE’16 and Sanjna Rao ChE’ 22. Read more about the research here.

ABSTRACT
Discectomy procedures alleviate disability caused by intervertebral disc (IVD) herniation, but do not repair herniation-induced annulus fibrosus (AF) defects. Cell therapy shows promise for IVD repair, yet cell delivery biomaterials capable of sealing AF defects and restoring biomechanical function have poor biological performance. To balance the biomechanical and biological demands of IVD cell delivery biomaterials, we engineered an injectable composite biomaterial using cell-laden, degradable oxidized alginate (OxAlg) microbeads (MBs) to deliver AF cells within high-modulus genipin-crosslinked fibrin (FibGen) hydrogels (FibGen + MB composites). Conceptually, the high-modulus FibGen would immediately stabilize injured IVDs, while OxAlg MBs would protect and release cells required for long-term healing. We first showed that AF cells microencapsulated in OxAlg MBs maintained high viability and, upon release, displayed phenotypic AF cell morphology and gene expression. Next, we created cell-laden FibGen + MB composites and demonstrated that OxAlg MBs functionalized with RGD peptides (MB-RGD) minimized AF cell apoptosis and retained phenotypic gene expression. Further, we showed that cell-laden FibGen + MB composites are biomechanically stable and promote extracellular matrix (ECM) synthesis in long-term in vitro culture. Lastly, we evaluated cell-laden FibGen + MB-RGD composites in a long-term bovine caudal IVD organ culture bioreactor and found that composites had low herniation risk, provided superior biomechanical and biological repair to discectomy controls, and retained anabolic cells within the IVD injury space. This novel injectable composite hydrogel strategy shows promise as an IVD cell delivery sealant with potentially broad applications for its capacity to balance biomechanical and biological performance.

CARTILAGE


Prof. Weiser co-published “Hydrogel-Embedded Poly(Lactic-co-Glycolic Acid) Microspheres for the Delivery of hMSC-Derived Exosomes to Promote Bioactive Annulus Fibrosus Repair” in SAGE journals’ Cartilage (Vol. 13, Issue 3, July-September 2022).
Collaborators include Cooper alumni and ISMMS grad student Chris Panebianco ChE’16 and Keti Vaso ChE’ 22. Read more about the research here.

ABSTRACT
Objective - Intervertebral disk degeneration is a prevalent postoperative complication after discectomy, underscoring the need to develop preventative and bioactive treatment strategies that decelerate degeneration and seal annulus fibrosus (AF) defects. Human mesenchymal stem cell–derived exosomes (MSC-Exos) hold promise for cell-free bioactive repair; however, their ability to promote AF repair is poorly understood. The objective of this study was to evaluate the ability of MSC-Exos to promote endogenous AF repair processes and integrate MSC-Exos within a biomaterial delivery system.

  • Founded by inventor, industrialist and philanthropist Peter Cooper in 1859, The Cooper Union for the Advancement of Science and Art offers education in art, architecture and engineering, as well as courses in the humanities and social sciences.

  • “My feelings, my desires, my hopes, embrace humanity throughout the world,” Peter Cooper proclaimed in a speech in 1853. He looked forward to a time when, “knowledge shall cover the earth as waters cover the great deep.”

  • From its beginnings, Cooper Union was a unique institution, dedicated to founder Peter Cooper's proposition that education is the key not only to personal prosperity but to civic virtue and harmony.

  • Peter Cooper wanted his graduates to acquire the technical mastery and entrepreneurial skills, enrich their intellects and spark their creativity, and develop a sense of social justice that would translate into action.